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ABSTRACT 

The lattice gauge theory’s hamiltonian formulation is reviewed. We present a 

theory involving 4 quarks; a massless SU(2) doublet (u and d) and in addition, two 

massive quarks (c and s). Calculations of the theory’s strong coupling expansion are 

described, and mass ratios for 6 particles (Q, $I , A, AC, F, F*) are constructed. The 

results agree with the physical spectrum to 12% and exhibit sensible dependences 

on the input masses for the s and c quarks. 
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I. INTRODUCTION 

Quantum chromodynamics I IS a presently popular model for strong inter- 

action physics. The theory is asymptotically free2 and conjectured to involve 

strong coupling at large distances. The lattice version of the theory 3,4 1s a gauge 

invariant regularization which exhibits confinement in the strong coupling regime. 

In the lattice theory, strong coupling expansions may be constructed. 

The hamiltonian form of the lattice theories has been used extensively in the 

investigation of model field theories. 5y6 Strong coupling expansions for the lattice 

Schwinger model have been compiled to 8th order.5 The results of this 

computation agree well with known quantities available from the exactly solvable 

continuum theory. Also, the lattice hamiltonian method has been successfully 

applied to the W(N) Thirring modeL6 

In four dimensions, the spectrum of the pure SU(3) gauge theory has been 

explored,7 and so has the hadron spectrum of a theory of gluons interacting with an 

W(2) doublet of massless quarks.8 In this paper, I shall report the results of strong 

coupling expansions for a theory of broken SU(4); a theory incorporating strange 

and charmed quarks in addition to the massless isodoublet of “u” and “d” quarks. 

Strong coupling expansions for 6 particles are computed. They are the I# (CC 

vector), $ 6s vector), A(uds), A, (udc), F (SC pseudoscalar), and F* Gc vector). The 

fits obtained depend on two input quark masses and two irrelevant parameters. The 

resulting mass ratios are very sensitive to the input quark masses, and insensitive 

to the irrelevant parameters. We obtain agreement with the physical spectrum to 

within 12%, and also sensible dependence on input quark masses as they vary. For a 

particular choice of quark masses, we obtain 

- 
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m /m $ $ = 3.09 (3.09) 
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m /m a :‘, = 2.7 (2.7) 

m lm, 
$ c 

= 1.35 (1.35) 

m /m J, F = 1.34 (1.48) 

milr/mF* = 1.34 (1.53) 

We begin by introducing the lattice theory and defining its degrees of freedom. 

The vacuum is then constructed and the actions of various terms of the interaction 

hamiltonian are displayed. The treatment of the mass term is discussed. Strong 

coupling wavefunctions for various particles are then formed, and the perturbation 

series is constructed and interpreted via Pad6 approximants. Finally, I present the 

results and discuss them. 
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II. INTRODUCTION TO THE LATTICE THEORY 

Quantum chromodynamics is described by the Lagrangian 

y= T(i$- m)$- eTy,$A -K FuVFu” . 
I-I 

The theory is asymptotically free and is expected to involve strong coupling at 

large distances. The lattice formulation of this theory, invented by Wilson and 

Polyakov, 3 IS a natural setting for studying the strong coupling limit. In what 

follows, we will do some calculations in the Hamiltonian formulation’ of the lattice 

gauge theory. This formalism was introduced by Kogut and Susskind. 

The Hamiltonian version of the theory is built on a spatial lattice with lattice 

spacing a and N links. Time evolution is continuous. To simplify the canonical 

formalism and get a Hamiltonian, we will work in the A0 = 0 gauge. 

The degrees of freedom of the theory are a(r) and U. q(r) is a discretized 

fermion field, defined on lattice sites r. The U’s are matrices in the gauge group. 

For us, they will be 3 x 3 SU(3) matrices, acting on the color indices of the fermion 

field. They are labeled U(r, ?I) where r is a lattice site and 6 is a lattice direction. 

We assume U(r, n) = U(r+ii, -^n)-‘. 

Gauge transformations in the lattice theory are 

JIW + V(rNk) 

U(r, n) + V(r) U V+ (r + ̂ n) 

Thus,products of fermion fields at different sites are not gauge invariant. Such 

products will arise when we convert the derivatives of the Dirac Hamiltonian to 

finite differences. This catastrophe can be averted by noting that the quantity 
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q(r) U(r, ^nMr + ?I) 

is a gauge invariant. There is an analogous construction in the continuum theory. 

It is the gauge invariant definition of a current as a limit given by Schwinger. This 

uses the form 

ig i xdz’Alii(z)(Ai/Z) tiy) 
Y 

which is gauge invariant for any x and y . In fact, in the continuum limit of the 

lattice theory, the U matrices approach 1, and can be written 

U fl exp iag AVi(r)# (,I i/Z) (2.1) 

as a +O. This is similar in form to the above. In fact, the various terms in the 

lattice Hamiltonian are determined in detail by requiring that a naive continuum 

limit obtained by using the above parametrization of U agrees with the classical 

Hamiltonian. 

The Hamiltonian for the pure gauge theory is 

H = $ 1 E*(r,^n) -L 1 (Tr UUUU + hc) 

r,^n> 0 g2a squares 

The trace term is an abbreviation for 

. 

Tr U(r,^n)U(r+ii,~n)U(r+~+~, -^n)U(r+$ -h) . 

The first term in H is the electric field strength energy. In our lattice theory, it is 

the quadratic casimir operator for SU(3). This is because the electric field, Ei is 
- 
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the canonical conjugate to Ai in the continuum theory. From Eq. (2.1) we see that 

we can generalize E as the conjugate variable to a degree of freedom Cl where 

u = ,i- 51.5 . This gives it the property of generating infinitesimal SU(3) rotations, 

so E2 is the quadratic casimir operator. Note that for various representations E* 

takes on well-defined values. For the singlet, E* = 0; for the 3, E* q 4/3; for the 5, 

E2 = 10/3, etc. 

The trace over 4 U’s reduces to the non-Abelian magnetic field strength 

energy in the (classical) limit a + 0. The coefficients recorded are the ones needed 

to recover the classical continuum Hamiltonian in that limit. 

The quantum mechanics is defined by 

U 0-I is in the 3x 3 representation) 
ac cb 

. 

Eventually, we will classify terms in the Hamiltonian into free and 

interacting parts: H = Ho + XV. Then, we’ll do perturbation theory in V. 

A particularly convenient setting for high order perturbation calculations is 

the Wigner-Brillioun’ formalism. The advantage of this formalism is that it allows 

systematic high order expansions. If the energy of the state to be computed is E, 

and the state in the absence of V (e.g. x = 0) has energy Eo, we have 

E = Eo+ <v,+ <VEvH -J!- v> + .,. +<v*v . ..v+-v> + . . . 
0 

n is a projection operator excluding the initial state. Note that the energy 

denominators involve E, not Eo. If we assume an expansion, 
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E : Eo+a x+o x 2 
1 2 +... 

substitute it in the energy denominators, and expand the result, we can obtain 

expressions for the a i%. These turn out to be nth order matrix elements with 

energy denominators involving Eo, and subtractions. These subtractions are 

important. We shall see that they insure that N* contributions to the vacuum 

energy are cancelled and that particle energies are N-independent. 

Much of our work will involve a slightly more complicated case than the 

above. We will be considering two degenerate states which are mixed by the 

perturbation. In this case, we form a matrix uab with diagonal elements involving 

the above matrix elements in one of the states and the off-diagonal element 

involving matrix elements between the two different states. Then we diagonalize 

the resulting matrix computing its eigenvalues as power series whose coefficients 

have E-dependent energy denominators. E is converted to E. as before, with 

resulting non-trivial subtractions cancelling unwanted N dependences. 

At this point, we are left with power series in l/g* for the masses of 

particles. In the continuum limit, by asymptotic freedom arguments, the bare 

coupling constant g goes to zero, so x = l/g2 goes to infinity. These series do not 

converge for large x, and we want to extrapolate them. To do this, we will use 

*IO Pade 
* 

approximants. Pade approximants have been used with much success in the 

theory of critical phenomena. II In that field, expansions in (1/T) are computed at 

high temperatures. Pad: approximants are then used to search for critical points, 

calculate critical temperatures, and even critical exponents. We will use them only 

to extrapolate mass ratios. These have a known asymptote in the continuum limit; 

they approach constants. Thus, we will be interested in diagonal Pade’s. 

The Pad; approximants to the series we calculate will turn out to extrapolate 

through the entire range of g with no singularity, and in fact, with only a small 

change in the mass ratios. 
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III. THE FERMION METHOD 

Putting the Dirac equation on a lattice 8 IS an ambiguous procedure. Alany 

techniques exist. The major problem is that the simplest lattice Hamiltonian 

representing the Dirac equation has excitations with low energy in all corners of 

the Briilouin zone. In one space dimension, this means that excitations with 

“momentum” 0 and n/a both have zero energy. The way around this problem we 

choose is to use a formalism in which the Hamiltonian is interpreted as referring to 

more than 1 field. In one space dimension, there are two fields corresponding to 

the two components of a fermion field. In three-space dimensions, we have 23 q 8 

fields corresponding to two 4-component fermion fields. 

In the representation 

-T 0 Is 

( 1 ( 

1 
Cl: 

z 0 
; B= 

0 

the Dirac equation takes on the form 

p = -(a . V)@ = - 

Thus 

0 

0 

-v2 
Vx+i V 

Y 

3 -I I 
; Y5 = c 1, 

0 V2 
0 Vx+i V 

Y 
Vx-i V 0 

Y 

- V2 0 

Ox-i V 
Y 

-v* 

0 

0 

4 . 

i1 = - V&3- Vxa4 +iVy$4 , etc. 
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We see that 6 i involves G 3 in the rz^ direction, and $14 in the *x;y directions with 

similar statements holding the rest of the components of la. This suggests the 

labeling of the lattice shown in Figure 3.1. The lattice approximation to the 

gradient is V$I (r) = ( Nr+ha)-Q(r-La))/2a. Thus, 9 i is only defined on sites ‘5” and is 

zero elsewhere. Furthermore, the labeling 1234 occurs completely in each 
n 
y = const. plane. This suggests that we define two fields fi = oi (y = even) and 

gi = $ (y = odd). 

The Dirac equation then becomes 

f’ = A (a, sin k,a + aZ sin k,a)f + ay(sin kya)g 

i= i( ax sin k,a + aZ sin k,a)g + a y(sin kyz)f . 

Defining u = f+g and d q U(f-g), 

(3.1) 

where U = - Bal a3 is a unitary transformation. The continuum limit of this 

equation is the 2 species Dirac equation. The Hamiltonian in terms of o is not 

symmetric. We can make a new field 

$tr) = S(r)x(r) 

in terms of which, the Hamiltonian is simpler. S(r) is a phase. In terms of y, 

H = & 1 xt (r) (-)rxhy + (-) 
C 

rY h, + (-)rzbx d(r) 
r 1 (3.2) 



.-lo- 

where AxJ(r) = Ip(r+?)+ dr-2). The phase used was 
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S(r) = i Tx+Tz Ay D(x, z) i “Jy = (-) WY 1 ; 

D(x, z) = -1 if x and z are odd; +I otherwise . 

This is the Hamiltonian used in extensive spectrum calculations reported in 

reference 8. 

The commutation relations obeyed by the Dirac field are 

IX r+ 9 Xr’l = 6rrg 

There is one additional ingredient which we need. We are doing calculations in 

which the quarks are given a mass. Hence, we want the lattice version of 

Hm = Mccc + MS% 

where c and s are the charmed and strange quark fields. Note that if MC f MS, the 

isospin symmetry of the theory is lost. Explicitly, from Eq. (10.1) we find 

H m = (MC + Ivls) 1 (-)‘x+(r)dr) + i(Mc - (MS) 1 (-jrX ’ 
r r 

x (r)pdl - %2] dr) (3.3) 

wheredl =^x+$;d2= c - ^y; and &,x(r) = X(r + d) + X(r - d). 

The symmetry breaking term in H is nonlocal. This is related to the fact that 

the original two fields f and g (which occupied different ^y planes) were coupled, and 

the decoupled versions, u and d, were mixtures. Note that the action of this term 
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in H (to be called HD) is restricted to z = constant planes. We shall soon see how 

the usual space time and internal symmetries appear in this theory. 

Finally, we must indude the light quarks in this calculation. They are 

expected to have effects on the spectrum of heavy quarks. Also we will compute 

the masses of some particles involving both light and heavy quarks. The light quark 

field will be denoted by X. All in all, we take as our strong coupling Hamiltonian 

(preliminarily): 

H = HO+Hh+H H + Hbox + H A 

where 

E2(r,i% + (M c + MS) 1 6)’ xt (r) $r) 
r,ii> 0 r 

Hh = k 1 (-jr’ Xt(r)Uk,fiy)X(r + ?i,) + . . . 
r 

HH = k 1 & 
r 

X+(rPJ(r$y)x(r + ̂ n,) + . . . 

HA = i(M, - MS) l C-lrX [x’ (r)U(r,Sx)U(r+nx, ny)x(r+~x+iiy) + . ..I 
r 

Hbox = -+ cc tr UUUU + h.c.) 
ga 

(3.4) 

It is convenient to define H = g2/2a W. 
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IV. THE VACUUM 

The ground state of the Hamiltonian HO will now be considered. For the pure 

gauge field, we want to minimize E2(r, ^n) for each r, ^n. This is realized by E2 = 0. 

Each link is in the singlet representation. In the absence of a mass term, Ho makes 

no reference to fermions, so there is a degeneracy. To resolve it, we must do 

degenerate perturbation theory to second order. For the moment, consider just one 

fermion field. In that case, we have to minimize the expression 

’ Weff > = x2<Hh -+ Hh> 

W eff 
=12 

4 ’ 1 PWp(r +^n) 

r,L >O 
(4.1) 

where p(r) = I x+(r), x(r)]. 

Using the commutation relations for x, we can map out the spectrum of p . It 

is local, so we shall drop the index r for now. Let 1 +z be the state for which 

xi 1 f> = 0. Then, 

p/S> - - xixi+pr = -(Cxi,xi+) -Xi+Xi)(+> = -3(f> 

+I 

‘I t t 
pEabcxa xb 

If> = -xa+l+> 

$’ = + cabcxa+x b+ 1 t> 

t t t 
pEabcxd Xb’X c’ It> = + 3(EabcXa + + +) If> = +31+> xb Xc 

The vacuum in this case is seen to be 
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/ f> for r odd (even) and I+> for r even (odd) . 

It is twofold degenerate, and has an energy - g Nx2. 

The two species case is potentially troublesome, I2 but no real difficulties 

occur for the case at hand. The mass term in Ho lifts the degeneracy in the heavy 

quark sector. The resulting vacuum is staggered with pH = +3 on odd sites. This is 

a first order effect. Next, we look in second order to resolve the remaining light 

quark degeneracy. Arguments similar to the one field case show that the light 

quark sector’s vacuum is also staggered. 

Even though the heavy and light quark vacua are staggered, their relative 

relationship is still undetermined. The question is whether it is energetically 

favorable to have heavy and light quark excitations appearing at one site, or heavy 

quark and light antiquark excitations on one site. The difference is first felt in 4th 

order. The mass term has no effect. 

The only difference between the two vacua to 4th order is whether the 

allowed representations in the intermediate state of Figure 4.1 are the I and 5 or 

the 1 and 5. The I and 8 come from a vacuum in which quarks and antiquarks of 

the other species are one site. The 3 and 6 come from a vacuum which has quarks 

of all species on one site. The contributions to E. are (dropping N and some 

numerical factors) 

3 -+ 4 3 +A 
(4.2) 

These are multiplied by (-) in their contribution to Eo, so clearly, the 2nd vacuum 

(with the 1 and 5) is favored. We shall use it in our subsequent calculations. 

Furthermore, we will retain a p-p term for both heavy and light quarks, but 

added as an irrelevant operator. The coefficients for each will be considered 
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independent. Keeping these terms in H is helpful because it lifts the above 

degeneracies explicitly. They are irrelevant terms in the continuum limit and we 

shall see that the spectrum in the continuum limit is insensitive to the strength of 

their coefficients. 

V. ACTIONS OF TERMS IN H 

Now that we have our vacuum, it is appropriate to see how H acts on it. First 

of all, we have those terms arising from the continuum kinetic energy, Hh and HH. 

They involve bilinears in the fermion field like 

Xi+ (t)Uij(r, i)Xj(r + i) + h.c. (5.1) 

Acting on the vacuum, this term produces a quark-antiquark pair with a flux link 

(Uij) between them. This is true for X and X. Its action will be denoted by Figure 

5.1. Also Eq. (5.1) can destroy such an excitation. Appearing in Hh, such terms are 

accompanied by a phase. This must be taken into account in doing perturbation 

theory. 

The term involving a product of 4 U-matrices around a square can act upon 

the vacuum to excite 4 links. The mass term in H0 appears in energy denominators. 

It counts of the number of heavy particles in an intermediate state and gives a 

contribution ZM+x x that number. The flux energy E * is 4/3 for the 3 

representation. IMore nontrivial is the action of H s H il can destroy a quark and 

recreate it 2 sites away, in directions +df *. For the direction id 
t l, we have a 

+iM-x, and for +d *, it is -iM x. There is also a phase (-) TX where rx is the x- 

component of the new position of the (anti) quark. Note that these actions are only 

in the x-y plane. In making the pure fermion part gauge invariant, we must stretch 
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gauge field matrices U from r to r ti. This is done both ways (within the plane) and 

averaged. Finally, in H0 we now will include pep terms for heavy and light quarks 

with coefficients RL and RH. These terms assign different energies to different 

fermion configurations. Thus, a graph like Figure 5.2 is well defined. The vacuum 

has an energy due to the p. p term which comes about because Q = r3 for each site, 

and adjacent sites have opposite signs. Thus, the vacuum expectation value of the 

p-p term is (3)(-3)x the number of links on the lattice. A fermion on a site 

changes its pvalue from -3 to -1. The 6 links which each had the value (-9) now 

have the value (+3)(-l) = -3, each increasing in energy by 6R. A single fermion has 

an energy 36R. One can compute the p-p energy for various fermion 

configurations in this fashion. 

VI. TREATMENT OF THE MASS TERM 

In the resealed Hamiltonian W, the mass terms appear as Ma/g*. We now 

discuss the continuum limit of this. 

The running coupling constant in lattice gauge theories is conjectured to 

behave linearly for large a until some point g = O(1) where it starts to fall off more 

slowly than linearly. It is unlikely that a 4th order calculation will be extrapolated 

into this region. The catcuiations 13 which indicate this dependence show that g 

departs from linear behavior in the correct direction, but are not reliable beyond 

that. We must be content to extrapolate a strongly coupled theory g >> 1 (x CC 1) 

to a fairly weakly coupled theory. It is our hope that the hadron masses are 

insensitive to the g << I region, and that the dynamics responsible for hadron 

masses takes place at larger distances. Operationally, this means we take g(a)= a 

for purposes of taking a continuum limit. 

Another issue is mass renormalization in a non-superrenormalizable theory in 

the strong coupling regime. The Gross-Neveu model has been studied on the 
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lattice. Recall this is a many species version of the Thirring model. With an 

appropriate choice of the sign of the coupling, the theory is asymptotically free. 

The theory is described by the Lagrangian 

_Ea= T(iVJti+#g*C&)* 

Zee,l’ and Shigemitsu and Elitzur6 have analyzed this model in the Hartree-Fock 

approximation. They find an integral equation for the “gap” -g* C-W>. By holding 

this “gap” or effective fermion mass constant with varying cutoff (in the Hartree- 

Fock approximation), they are able to reproduce the correct behavior for the 

running coupling constant in both strong and weak coupling limits. A bare mass 

added to the above theory is not a drastic perturbation since the theory without a 

bare mass spontaneously breaks chiral symmetry by generating a fermion mass. 

One can show that the effect of adding a bare mass is just to add it to the gap in 

the integral equation, producing an effective gap. The treatment of the gap as 

constant, independent of a then translates to treating the effective gap also as 

independent of a. 

The mass renormalizations from the strong coupling end are seen to be 

similar to that of the Schwinger model. We must go one step further. The 

Schwinger model, or our 4-dimensional theory with ,M = constant has a mass term 

like Ma/g*. In these theories, we have g = a. The net coefficient of the mass term 

is then ?vI v’Z. In the four dimensional theory, this would mean we need 8 orders of 

perturbation theory in the mass term. Such a calculation is not feasible. We must 

be content to use a coefficient Mx. To see how dramatic this concession is, we 

carried it out for the Schwinger model. 
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The spectrum of the massless Schwinger model consists of free bosons of 

mass (~?*/a). When a fermion mass is induded, there is an attractive interaction in 

the scalar sector of the two boson state. This attraction binds the two bosons, 

forming the scalar state of the massive Schwinger model. Both strong and weak 

coupling limits of the binding energy of this state are amenable to exact continuum 

anaJysis.5 Furthermore, there exists an approximate continuum calculation for the 

binding energy of the scalar state for all fermion mass. I5 It is a variational 

calculation done in the infinite momentum frame when the theory is particularly 

simple. Of course, it agrees with both (exactly known) limits. The binding energy 

is essentially a mass ratio, and precisely the kind of quantity we wish to calculate 

using strong coupling methods. Fig. 6.1 displays the results of both the variational 

continuum calculation (the lower curve) and the strong coupling calculation using a 

mass term Mx. These results are very encouraging, and we will treat the mass 

term in four dimensions accordingly. 

Our Hamiltonian now is (with g2/2a scaled out) 

H,, = 1 &r,i;) + M+x F C-j’ X’(r)x(r) + RL 1 P L(r) *oL(r +?I) 

r,^n r,^o> 0 

+RH 1 PH(r) * pH(r + 3 
r,>>O 

Hh + HH = x 1 PGl[X+ir)UIr, ^n)x(r +^n) + . . . j 
r,^n 

HA = iM_x 1 (-jrX [x*(r)“(r, ^nx)U(r + ;ix, Fly)x (r + Ex + ?~y) + . . . ] 
r 

H = -2x* 1 (Tr UUUU + h.4 . 
boxes 

(6.2) 
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VII. THE 4TH ORDER VACUUM 

With our Hamiltonian, we can now illustrate the computation of the vacuum 

energy to 4th order in x. To order x, there is no contribution. To order x2, we have 

the graphs of Figure 7.1. They contribute 

+ x2. 3 -N. -1 

2 + 68RH + 4M+x 

The three comes from the fact that the color group is SU(3), e.g. 

t 
‘“ij “kll > 

1 
= J”ia5jk 

and multiplying this by 6. 6. yields 3. The N comes from the fact that there are 
la Jk 

N-links on the lattice. The energy denominator’s 4/3 is the expectation value of E* 

in the triplet state created by U. The 68RL,RH come from the 2 quarks. To see 

this, note that there are JO links from a quark outward to undisturbed vacuum 

yielding 6.10 = 60. The remaining link, from one quark to the antiquark, has a p .p 

term of (-1) as opposed to C-91, so this link is +8 above the vacuum. Thus, the p. p 

energy of the configuration is +68. 

To third order, we might have a graph like Figure 7.2. It is not hard to see 

that the sum of such graphs vanishes. Next, we come to 4th order. Graphs like 

Figure 7.3 come in many varieties. There are N places to put the first. It turns out 

that there are N-57 places to put the second bubble with a P-P energy of the 

configuration being 2’68 = 136R, 42 places with pap = 132R, four with 

pap = 128R, 10 places which touch the original link, having a pap term of 128R, 

and the one way to put the second bubble on the original link, with a p .p energy of 

128R. For the graphs with disjoint vacuum bubbles, the 3 from S”(3)-color is now a 

- 
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9. For those graphs which have the bubbles touching, the factor is a 6. The graph 

with the second bubble on the same link as the first will have its intermediate state 

with flux in the 3 representation, so E* for it is 4/3 in contrast to the others which 

have 4/3 from each of 2 links. Note that 2 x 1 = 2 +A, and conceivably the 

intermediate flux state could be a 6 _. This is forbidden, however, because of the 

antisymmetry involved in having 2 fermions on one site. 

Time orders also have to be included. They give a factor of 4 for all graphs 

except the one with both bubbles on one site. All in all, these diagrams give 

12N 192N 

‘(2 +6gRL)2($+128RL) -(;+48RL)2(;+128RL) 

756N lSN(N - 57) 
‘(f +6gRL)2($ +132RL) - (3 +6gRL)2(; +136RL) * 

Then, we have diagrams with one bubble of light quarks and the other consisting of 

heavy quarks. One such diagram’s essential features appeared in Eq. (4.2). We shall 

see how that came about. The intermediate state can be in a 1. or an Snow. This is 

because the 2 species are on different lattice sites, so we have 3x 2 = 1. + 4 (as 

opposed to 1 x _3 = 2 + 5). The energy denominator for a 1. has E* = 0, and a regular 

p * 0 energy. The S has E2 = 3. The only new feature is the coefficients which 

appeared in Eq. (4.2). The matrix element needed is 

‘“ba +u u +Uab> dc cd 

(see Figure 4.1). One may insert a projection operator in the middle of this to 

extract the 1. or 5 representations. These have different energy denominators. 

Recall the Clebsh-Gordon series for a product of U’s: 
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“ab”cd = C <Na, MC/ RCO< Nb,Md / R3> Uo8 R . 

We also have the Clebsh-Gordon coefficients 

<113i,7j> = ’ 5 
77 ij 

<S,a[ 3i, Jj> = ‘Aa ?T ij 

Thus, in the above, a singlet contributes 

(4 ‘cb’ad) (3 ‘cb6ad) = ’ * 

The octet contributes: 

<Ta, 3d ISa><?b, 3c 186><Td, 3a/Sy><Tc, 3b186><uaB 8U *> 
Y6 

’ ‘x y $& YA = S 4 ad bc da cb 55 6 
cxy 65 

)( ‘bc ’ ‘cb’ = & 16’16 = 8 

More complicated matrix elements of U’s are handled similarly. 

Finally, we have those terms possible due to the new mass-difference 

operator in the Hamiltonian. These differentiate between “sticks” created by 

Xt (r)UX (r + ?I) in the x, y, and z directions. For those in the x or y direction, we 

have a group of diagrams shown in Figure 7.4. They contribute 

- 
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-fNM * ~36. I 1 

0 + 68RH + 4M+x 4 + 72RH + 4M+x * 

The 2/3 is because 2/3 of the links are in the x-y plane. The remaining links are in 

the i direction. Their contribution is also evaluated as 

- f NM-**48’ 1 

p + 68RH l 4M+x 

There is also a contribution from Hbox which is : N. Then, we have the 

subtractions in the Wigner-BriIlouin formalism. These in this case correspond to 

adding 

-<V&V><V I v> 
(EO-~d2 

For the vacuum, these reduce to adding 

9N2 1 

I ; f 68RL + 4 J + 68RH + 4M+x ] [ (++~*RL ~*+~~+68~Hi+iiM+~!*] 

When this is done, all N* dependence disappears from the computed shift in 

the vacuum energy and it has its proper extensive nature. The next task is to 

compute the particle spectrum above the vacuum. Before turning to this, we will 

take a second look at the lattice fermion method. 
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VIII. SYMMETRIES OF THE FERMION HAMILTONIAN’ 

Consider one species, and its Hamiltonian 

H = & 1 x+(r) C &Ax + (-1 Ay + (-h, rY 1 X(r) . r 
This Hamiltonian incorporates many fermion symmetries, but in a complicated 

manner. In the first place, we have translation and parity. Translation symmetry, 

because of the labeling of the lattice, is r + r + 2% 

Another symmetry of H is translation by one unit in a given direction. In 

order to recover the original Hamiltonian, we must incorporate a phase: 

r 
(4 ’ x(r +?I~) 

r 
x(r) + (4 ’ x(r +$ 

(-iry )((r + ;I x ) 

This takes the u and d fields to (for the last case) 

u+i(i) , d-(.) 

and corresponds to iy5T ,. Translations in the ^y or ; directions in Eq. (8.1) 

correspond to i Y5 T2 or i y5T3. We can also combine these: (iy5ri)(iy5:2) = 

-TIT2 =-T3. 
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T3: x(r) + -i (4 
‘Z+ry 

;< (r + Fix + Ti,) 

Note that these satisfy ordinary product rules as they must. 

Consider a lattice rotation. Only lattice rotations of 90’ about an axis, which 

can be a symmetry of the lattice, are to be considered. If we make an ansatz 

x(r) + P(r) XV) 

we can determine what conditions P must satisfy to keep H invariant. For lattice 

rotations of just 90°, we can show that such a P exists, and 90’ lattice rotations 

correspond to exp 
( 
i$( u +?).?I 

1 
on the quark fields u and d. It is more 

convenient to consider rotations about an axis of II, which on the quark fields is 

exp .$(o 
( 

cl).; = 
1 

i( z + ?) * 6. We can then undo the isospin transformation, and 

come up with pure spin operators on u and d: 

iu * x. XCXYZ) + (4 
rXcrZ 

x(x, I - y, I - z) 

ia 
rx+r 

y: x(xyz) -+ 44 y x(1 - x, y, I - 2) 

io,: XCXYZ) -+ (4 ry+rzX(I-x, I-y,21 . (8.2) 

These are symmetries of H. These can now be used to classify states. 

- 
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IX. SOME WAVEFUNCTIONS 

We can construct the wavefunctions of the 0 and Ilr particles. They are 

vector mesons which are formed from s or c quarks alone. A straightforward way 

to find their wavefunctions is to write out the bilinear ?ylic or;y,,s in terms of fi, 

gi, and then in terms of x . The component we choose is u = x. Let 

] b = & i 1 (-)rZ [ X+Wx(r + nx) - X+ (r + “x)x(r)] 
r 

lB>=h 16) rY 
r C 

X+(r)X(r l ny) + X+(r + n,)x(r) 1 
Then, 

IP = &(I A’ - lB>) 

I+> = &(A>+ 1 B’) 

Now, the two components of each wavefunction are degenerate to zeroth order. 

They are mixed by HL? in first order because 

<A(H*(B> = 4M- 

One can see this as follows. ) B > consists of sticks in the ^y direction, with a phase 

wry where ry is taken from the point closest to y = -5 /A > consists of sticks in 
r +r 

the G direction with a phase i(-jrz(-)’ or i(-) ’ y where r is the point closest to 

x = --. Take an end of the y-stick and let Ha move it in a way such that the 

resulting state can project onto <A I, e.g. take the lower quark which was at r and 
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put it at r’ = r + nx + n . 
rx+l 

Y 
Doing this, Ha gives us a factor iM-(-) . Then, 

r +r +l 
projecting this onto <A 1 gives us a factor -i(-) ’ ’ (r is the point of origin of 

the quark we moved), and the net factor is +rM _. There are two ways of doing this 

to each of 2 quarks, and the sign for all such processes is positive, and the matrix 

element is as stated. 

When we compute a mass-matrix, we will have a degeneracy in IA> and IB>. 

There is a mixing amplitude 4M-x, and a diagonal amplitude 0 + 68RH + 4M+x to 

lowest order. The linear combinations of /A> and 1 B> diagonalizing the mass 

matrix are )A> 2 \B > in / $> and j ‘$I>. Furthermore, the lVlth” order energies 

involved for the o and $I respectively involve (M+ M-) which is MS or MC alone. 

Similarly, we can compute the wavefunctions for vector and pseudoscalar 

mesons consisting of c and s quarks. We have 

(A, F> = $ 1 (-) 
‘X+ry 

[ x+(r) dr + fiy) + x+Cr + ?iy)x(r) 1 ( 0 > 

1 B, F > = i h 1 (-)rX+rZ [ x+(r),(r +:x) + x’(r + ‘n&(r)] 10 > 

IF> q J:(/A,F>- IB,F>) 

1 A, F*> = -i$. 1 (-)rx+ry [ xt(r)& + nx) + x’(r + “x)X(r)] 

18, F*> = $ 1 f-J’ [ x’(rfx(r + iiy) + yt (r + i;yh(r)] 

F* = ~(IA,F+>-] B,F*>) 

- 
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For the F and F*, the components A, B do not mix to lowest order. The 

wavefunctions involving A-B arises from the externally imposed constraint of 

looking at Cs states, but it really makes no difference. The mass involved in lowest 

order is just M+ s MC + Us as it should be. 

X. THE NUCLEON WAVEFUNCTION 

We shall also construct a wavefunction for a nucleon state. The ones most 

accessible to us are udc and uds. Since light and heavy quarks are on staggered 

sites, it has the structure of a meson. The two light quarks are on one site and the 

heavy quark is one site away. We can construct wavefunctions which have nonzero 

< B I HA IA >, having the correct mass to lowest order. These states are not actually 

states of definite r3 (heavy) because when one performs the required translations 

on just the heavy particles, the light ones remain at their sites and a new many link 

state is mixed into the original. They are, however, truncations to one link of such 

exact states. Moreover, the critical requirement is that the matrix element 

< B (Ha IA> give the correct lowest order mass. The structure of the gauge field- 

fermion complex is xi +(r)Xj+ Xk+(r +3ecrjklJic,(r, ?I). As a convenient ansatz, we 

take 

P > = 1 P,(r) [ Xi+(r)Xj+(r)Xk+(r + ;x) +o xXi+(r + nx)Xj+(r + nx)xk+(r)] 10 > 
r 

lB> = 1 PB(r)[Xit(r)Xjt(r)Xk? ( r 
r 

+ Tiy) + oyXit (r + ny)Xj+ (r + ny)xk+ (r)]lO) . 

We shall require < Al Ha 1 B> : 2M- and also that the states are spin Y2. They are to 

be identified with the A and AC. 

Requiring the nucleon states to have spin % reduces to the conditions 
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PA(-X, I - y, 2) = -io,PA(r)(-Iry+” 

and 

PB(l - x, -y, 2) = -ioy(-lrxPB(r) 

Then, requiring <Ai HA IB> = 2M- leads to other conditions allowing a determina- 

tion of P,(r) and P,(r). The resulting wavefunctions describe nudeon states with 

spin K. 

In actuai fact, the precise forms of PA and PB make no difference to 4th 

order in the strong coupling expansion. The only times such phases are really 

important are when, to a given order, it is possible to annihilate the particle and 

recreate it elsewhere. This can be done for the previous partides, but not for the 

nucleon. 

XI. THE PERTURBATION SERIES 

Now we will present some details of the perturbation calculation. To lowest 

order, H 
A can contribute. <B 1 H / A> h 0 for some of our particles. This induces 

A 
mixings, and is the only first order contribution. 

In second order, we have standard contributions in which Hh and HH make 

vacuum bubbles in the presence of a partide. These have been explained in the 

literature.8 They are evaluated in much the same way as the 4th order vacuum. 

Also, HA contributes as it did to the 4th order vacuum. One new feature available 

to the 4, (I, F and F* is annihilation and recreation at some other link. There are 

phases which come into play from the wavefunctions and from the Hamiltonian 

itself. 
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There are some third order graphs. These are shown in Figure 11.1. There is 

also a contribution from expanding the M terms in second order. Note that the + 

vacuum bubble may be from either species of quark. We will present the third 

order calculation for $ and t$ in some detail in order to illustrate the methods 

involved. To begin with, we present a shorthand notation for energy denominators. 

The flux content is denoted by the first letter. Then, the value of the p. p term 

follows as a number. Finally, the character of the quarks involved is denoted by H 

or 1. Thus, A68H : i/(4/3 + GSRH), B128L = i/(8/3 + 128RL), etc. These abbrevi- 

ations are acceptable to a computer. 

The last graph in Figure 11.1 can be evaluated yielding 

-8~ 3(~4H)2 = 8M-3(B4H)(BOH) + 4M-(BOH) . 

The second to last and third to last graphs sum to zero. The first graph, when the 

vacuum bubble is on the original link of the particle, and is composed of heavy 

quarks, gives 

(4M-1 4 -2 (C60H) A60H . 

The 4M comes from the 4 ways H can act on the particle to make such a graph. 

The next 4 is a result of the trace on-color indices. The two comes to include the 

identical contribution we have from the same process occurring on the link 

occupied by the final particle. The energy denominator C60H has a flux 

contribution of zero because the intermediate state it measures is in aI flux state. 

This is because _3 x 2 = 5 + 6 and the 5 representation is excluded due to the fact - 

that it is coupled to two fermions on one site which, of course, are automatically 

- 
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antisymmetrized. The next energy denominator A60H comes from the configu- 

ration resulting after HA has moved a quark; now there are 2 links in the 1 

representation; the initial state had one, and the difference is a flux energy of 4/3. 

Next, consider a diagram in which the heavy quark vacuum bubble touches the 

quark of the original particle unaffected by HA. There are 4 possible links for this: 

a factor of (4M-I as above, 2 energy denominators (-A60H), and a color-trace of 2. 

The result is 

32 M- (~60~)~ 

There are lots of other places near the particle to put the vacuum 

fluctuation, and in fact (N-74) places to put it which have no interaction with the 

particle. For these, we have the contribution 

@MmKN-74) 3 (A68Hi2 

Furthermore, we have to consider the case of a light quark vacuum fluctuation. 

When this occurs on one of the two links the particle occupied, the contribution is 

(4M-MA68L) 2-f [ D68L + 8 E68L 1 , 

The energy denominator D has a flux contribution -(r/3 and corresponds to the 

singlet representation in 2 x 1 = _I + 4. The E means a flux energy of 5/3 = 3 -4/3 

where 3 is the quadratic casimir operator for the octet. The weights for each are 

l/3 and 813 respectively. In addition to these, we have the results of expanding the 

second order energy denominators l/(4/3 + 68RH + 4M+x) in M+x to be added to the 
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above. Finally, there is the subtraction from Wigner-Brillouin perturbation theory. 

In this case it is 

2 
-4&I+ + &I-) < A IV VIB> , 

The vacuum energy also has a third order contribution due to expanding the 

second order energy denominator in M+. When all of these are combined, the N- 

dependence disappears and we have our contribution. This is nothing compared to 

fourth order. 

In fourth order, we have graphs coming from HH4. These include types shown 

in Figure 11.2. Also, we have graphs in which Hh acts twice. They indude types 

shown in Figure 11.3. In many of these, vacuum bubbles consisting of light quarks 

are permitted. The nucleon graphs have a different counting due to their different 

structure. After computing (and checking!) the myriads of such contributions, we 

must also collect expansions in M+x from lower order and the Wigner Brillouin 

subtraction term. Everything is then put on a computer for numerical evaluation. 
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XII. RESULTS 

The results of the fourth order calculations for the $I, $I, A, Ac, F and F* were 

programmed on a computer for repeated evaluation and variation of parameters. 

The program evaluated terms in the strong coupling expansions, took appropriate 

ratios, and constructed diagonal Pade’ approximants. The input was quark masses 

and the values of the o. o terms for light and heavy quarks. 

First, the series were analyzed with mc = ms = 0. The series were seen to be 

“healthy, ” i.e. extrapolatable. The mass ratios resulting were rn,)/rn* = .9 and 

m /mF + 
= 1.0 at a given value of RH and RL. 

Then we varied M + and M- and computed ratios mJl/m. For M+ = 2.0, 

M- = 1.65, RH = .OOl, and RL = .OOZ, we have displayed the Pad& in Figure 12.1. 

Note that the continuum limit is reached at x = 5. All ratios at x q 0 start out near 

I and move to continuum values which are quite close (up to a factor of 2) to the 

x = 0 point. The Pad& are smooth and well behaved. Note that the particle masses 

are all within 1236 of their experimental mass ratios. 

There is still more to do to understand the character of these mass ratios. 

First, let’s address the irrelevancy of the p-o term. For RL, we have the graph 

displayed in Figure 12.2. When RL varies by a factor of 20, the most dramatic 

change is shown by the ratio mJ, /m ~ This changes by .6 over the range. The other 

particles are quite independent of RL. The mass ratios exhibit more dependence on 

RH, however. This can be understood, since the P*P term is simlliar to the mass 

term. Both are sources of chiral symmetry breaking. Of course, in the continuum 

limit, the mass term is huge compared to the p-p term, but the fourth order 

expansion presumably does not see beyond some finite x. 

The mass ratios behave in a very systematic way as functions of the 

parameters. Consider RL, RH fixed. The ratio m /m increases as M + .M+ (as 
JI $ 
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the strange quark gets lighter). For a very wide range of hl+, we can always find an 

:M- to fit the ratio to 3.1. The ratio rn+ /m A exhibits more dependence on the 

absolute values of M +. As these masses increase, so does m $r% - This is in accord 

with quark counting. These two facts are the basis of our fits. Given a set of 

parameters RL and RH, we can find a unique set m+, 31 fitting the two above- 

mentioned ratios. Then we look at the remaining three raios: m $ /m 

mlCl/mF*. 

AC’ m$‘mF1 

They are always given by the values in the naive fit Figure 12.1. The 

masses M ~ depend on RL and RH. Once set by the two ratios we use to determine 

them, the remaining three mass ratios are always given by the fit. This results in 

an interpretation of the “irrelevancy” of RL and RH. They determine the quark 

mass parameters. Given them, we fit ,M ~ to data, and the remaining ratios 

computed are independent of these choices. The fit of M, by rn$/rn+ and m /m 
JI A 

is unique (as seen from experience). In Figure 12.3 we present a graph of MC (RH). 

It strongly depends on RH, but this might be thought of as a renormalization point. 

The reason we have retained RH was to avoid problems with diagrams like 

Fiiure 5.2. Such a diagram has no flux contribution to the energy denominator. 

When there is no P. p term, the only term in the energy denominator is M+x. If we 

were dealing with massless quarks, such a situation would be indicative of a 

degeneracy in the meson-exotic sector. The mass term splits these, as does the 

0.0 term, so there is no degeneracy. Nevertheless, the mass term alone makes 

this diagram contribute to a lower order (the energy denominator is proportional to 

x). The calculation of the spectrum with RH q 0 seems feasible, but has not yet 

been done. 

Another aspect of the spectrum presented is the lack of any splitting between 

F and F*. These are analogs of the TI and P for the light quark spectrum. 

Calculated to fourth order, the spectrum of light quarks shows a very small v -0 
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splitting, and this is its chief problem. Of course, in the heavy quark regime, one 

does not expect the dramatic splitting one sees in the R-P system. 

Another calculation of interest is to see how mass ratios behave in the limit 

of large IM,. \Vhen the quark masses are much more important than the other 

terms in H, we expect exceedingly simple mass ratios to result. This does, in fact, 

occur. From a graphical point of view, contributions like Figure 11.3 are roughly 

the same for all particles. When series grow very rapidly, Pade’s are dominated by 

low orders. This is what happens here. For the ratio mG /m$, with M+ = 100 and M 

varying from 0 to 50, the departure of the mass ratio given by the lattice theory 

from the naive quark mass ratio is 0%. For other ratios, the agreement is not quite 

so spectacular, but for M < 20, it is good to a few percent. -- 

Finally, we can speculate on techniques which might be useful in computing 

the K-D type particle masses. Recall these have the property that their zeroth 

order strong coupling wavefunctions are mixtures with different amounts of flux. 

Although many things remain to be worked out, perhaps matrix Pade approximants 

could be of use here. 

XIII. DISCUSSION 

We have seen that the mass ratios computed in the lattice gauge theory of 

heavy quarks are realistic. Their extrapolations from strong coupling to the 

continuum limit are singularity free. They have sensible behaviors in limits (say, 

large quark masses) and are quantitatively accurate in a regime of quark masses. 

There are further calculations which can be done, notably, treating more particles. 

It does not seem feasible to extend these calculations to higher order by hand, but 

perhaps the computer work presently underwayI will be used to shed some light on 

their behavior. 

- 
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FIGURE CAPTIONS 

The lattice. 

The diagram distinguishing the two vacuua. 

The action of Hh . 

A graph requiring the p- p term. 

The binding energy of the Schwinger model. The lower curve 

is obtained from an approximate continuum calculation, while 

the upper curve is a lattice calculation. 

Two second order vacuum diagrams. 

A third order graph. Note that the vacuum fluctuation 

consists here of heavy quarks. 

A fourth order graph. 

Three of the 9 fourth order graphs involving Hn2. 

Third order contributions to a particle mass. 

Some 4th order particle graphs. 

A fourth order particle graph involving H n2. 

Pade’s of mass ratios. 

Dependence of mass ratios on the variable RL. 

Dependence of M + on_RH. 
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